The subgroup of 2'-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties

Bioorg Med Chem. 2021 Feb 15:32:116001. doi: 10.1016/j.bmc.2021.116001. Epub 2021 Jan 7.

Abstract

Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.

Keywords: Antioxidant; Cancer therapeutics; Flavonoids; Intramolecular H-bond; Natural products.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents, Phytogenic / chemistry
  • Antineoplastic Agents, Phytogenic / isolation & purification
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Cell Proliferation / drug effects
  • Citrus / chemistry
  • Drug Screening Assays, Antitumor
  • Flavonoids / chemistry
  • Flavonoids / isolation & purification
  • Flavonoids / pharmacology*
  • Fruit / chemistry
  • Humans
  • Molecular Structure
  • Primulaceae / chemistry

Substances

  • Antineoplastic Agents, Phytogenic
  • Flavonoids
  • 2'-hydroxyflavone